

Answer all the questions below and then check your answers.

 A salt was analysed and found to contain 105.8g of sodium and 163.4g of chlorine. Find the empirical formula for this compound.

 A_r of sodium = 23 A_r of chlorine = 35.5

2. A compound of phosphorus and oxygen contains 250g of phosphorus and 318g of oxygen. The M_r of the compound is known to be 284. Find the empirical and molecular formula of this oxide of phosphorus.

3. A compound was found to contain 4g of calcium, 1.2g of carbon and 4.8g of oxygen. The M_r of this compound is 100. Calculate the empirical and molecular formula of this compound.

4. Copper carbonate is a green substance found on copper pipes when they react with carbon dioxide in the air. Copper carbonate decomposes when heated to form copper oxide and carbon dioxide gas. 494g of copper carbonate was decomposed to form 318g of copper oxide. Write a balanced symbolic equation for this reaction using the masses given. 5. 34g of silver nitrate (AgNO₃) underwent a displacement reaction with 2.4g of magnesium powder. This reaction produced 14.8g of magnesium nitrate, $Mg(NO_3)_2$, and 21.6g of silver. Use the masses given to write a balanced symbolic equation for this reaction.

 A_r of silver = 108 A_r of nitrogen = 14 A_r of oxygen = 16 A_r of magnesium = 24

6. A compound contains 40% sulfur and 60% oxygen. What is its empirical formula? What additional piece of information is needed to find its molecular formula?

7. Analysis of a compound showed that it contained 15% phosphorus and 85% chlorine. What is the empirical formula for this compound?

8. A compound with a Mr of 45 has the following % composition:

Carbon=53.3% hydrogen= 15.5% nitrogen=31.2%

What is the molecular formula for this compound?

 A_r of carbon = 12 A_r of nitrogen = 14 A_r of hydrogen = 1

Answers

1. A salt was analysed and found to contain 105.8g of sodium and 163.4g of chlorine. Find the empirical formula.

A_r of sodium = 23 A_r of chlorine = 35.5

Elements present	sodium	chlorine	
Mass/g	105.8g	163.4g	
Divide by A _r	105.8/23=4.6	163.4/35.5=4.6	
Divide by smallest number,	1	1	
in this case 4.6			
Empirical formula	NaCl		

2. A compound of phosphorus and oxygen contains 250g of phosphorus and 318g of oxygen. The M_r of the compound is known to be 284. Find the empirical and molecular formula of this oxide of phosphorus.

 A_r of phosphorus = 31 A_r of oxygen = 16

Elements present	phosphorus	oxygen	
Mass/g	250	318	
Divide by A _r	250/31=8.06	318/16=19.875	
Divide by smallest number,	1	2.46	
in this case 8.06		(round to 2.5)	
Empirical formula	PO _{2.5}		
	Double up to remove the 2.5, this gives the empirical		
	formula:		
	P ₂	<i>O</i> ₅	

 $P_2 O_5$ has an M_r of 142. However M_r of compound is 284, that is 284/142 = 2, double the M_r of the empirical formula, so its molecular formula is $P_4 O_{10}$

3. A compound was found to contain 4g of calcium, 1.2g of carbon and 4.8g of oxygen. The M_r of this compound is 100. Calculate the empirical and molecular formula of this compound.

Elements present	calcium	carbon	oxygen
Mass/g	4g	1.2g	4.8g
Divide by A _r	4/40=0.1 moles	1.2/12=0.1moles	4.8/16=0.3
Divide by smallest	1	1	3
number, in this			
case 0.1			
Empirical formula		CaCO ₃	

The Molecular formula and empirical formula are both the same, the compound is a $CaCO_3$ is $M_r = 100$

4. Copper carbonate is a green substance found on copper pipes when they react with carbon dioxide in the air. Copper carbonate decomposes when heated to form copper oxide and carbon dioxide gas. 494g of copper carbonate was decomposed to form 318g of copper oxide.

a. Calculate the mass of carbon dioxide gas released.

Mass of reactants and products must be the same. 494-318=176g of CO_2

b. Write balanced symbolic equation for this reaction using the masses given.

Substances	Copper	Copper oxide	Carbon dioxide
present	carbonate		
Mass/g	494g	318g	176g
Divide by M _r	494/123.5=4	318/79.5 = 4	176/44=4
Divide by	1	1	1
smallest, in this			
case 4			

In this case we have 1 mole of each of the reactants and products. So equation is simply:

 $CuCO_3 \longrightarrow CuO + CO_2$

5. 34g of silver nitrate (AgNO₃) underwent a displacement reaction with 2.4g of magnesium powder. This reaction produced 14.8g of magnesium nitrate, $Mg(NO_3)_2$, and 21.6g of silver. Use the masses given to write a balanced symbolic equation for this reaction.

Substances	Silver nitrate	magnesium	Magnesium	silver
present	AgNO ₃		nitrate	
			Mg(NO ₃) ₂	
Mass/g	34g	2.4g	14.8	21.6
Divide by M _r	34/170=0.2	2.4/24=0.1	14.8/148=0.1	21.6/106=0.2
/A _r				
Divide by	2	1	1	2
smallest				
number, in this				
case 0.1				

www.science-revision.co.uk

This give

$$2AgNO_3 + Mg \longrightarrow Mg(NO_3)_2 + 2Ag$$

6. A compound contains 40% sulfur and 60% oxygen. What is its empirical formula? What additional piece of information is needed to find its molecular formula?

 A_r of sulfur = 32 A_r of oxygen = 16

If you are given the composition as a % then to convert to masses simply assume you have 100g of the substance, then the % will be the same as masses - simple!

Elements present	sulfur	oxygen
Mass/g	40	60
Divide by A _r	40/32 =	60/16=
	1.25	3.75
Divide by smallest	1.25/1.25=	3.75/1.25=
number, in this case 0.1	1	3
Empirical formula	SO3	

So the empirical formula is $SO_{3.}$ To find its actual molecular formula we would need to know the M_r of the compound.

7. Analysis of a compound showed that it contained 15% phosphorus and 85% chlorine. What is the empirical formula for this compound?

Elements present	phosphorus	chlorine
Mass/g	15	8 <i>5</i>
Divide by A _r	15/31 =	85/35.5=
	0.48	2.39
Divide by smallest	0.48/0.48=	2.39/0.48=
number, in this case 0.1	1	5
Empirical formula	PCI5	

 A_r of phosphorus = 31 A_r of chlorine = 35.5

8. A compound with a Mr of 45 has the following % composition:

Carbon=53.3% hydrogen= 15.5% nitrogen=31.2%

What is the molecular formula for this compound?

 A_r of carbon = 12 A_r of nitrogen = 14 A_r of hydrogen = 1

Elements present	carbon	hydrogen	nitrogen
Mass/g	53.3	15.5	31.2
Divide by A _r	53.3/12=4.44	15.5/1= 15.5	31.2/14=2.22
Divide by smallest	2	7	1
number, in this			
case 2.22			
Empirical formula	C_2H_7N		

So empirical formula is C_2H_7N . The Mr of this is 45. So the empirical formula is the same as the molecular formula.